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is satisfied. Relation (2.10) can be obtained using the equations of rotation of the disk 
under the action of impact forces due to friction 

J&u = -MS; Jo = J, + m9 (2.11) 

where Am is the angular velocity increment during the impact. 
The equation of motion of the centre of mass leads in this case to the equation 

mcAo = -U+S (2.12) 

Under conditions of the motion considered here M and@ashould be taken in (2.11) and 
(2.12) in the form /l/. 

M = 2i+z,, CDt = h,a, 

From (2.11) and (2.12) we obtain the linear dependence of the angular velocityincrement 
on the normal reaction momentum 

Am=- 4i ss; 
&m 

-&AU 

where in addition to (2.10) the value of the coefficient a0 = %a"/3 is taken onto account. 
For practical purposes we will formulate this property in the form of a statement. If 

a plane rigid body rotates about an axis passing through the point 0 normal to the body plane, 
then at the instant of collisional start of frictional braking (along the axis of rotation) 
with circular contact area, the axis does not experience transverse impact loads when a" = 2lc, 
where 1 is the reduced length of the physical pendulum. 

The last equation follows from a comparison of (2.10) with the requirement that the 
momentum of the resultant friction forces is applied at the centre of impact. If, for example, 
c = a/4 (the ,line of zero pressure touches the contour of the circular contact area),. the 

diameter of that circle must be equal to the reduced length. In the trivial case when c = 0 
we have VEO for any value of a. 
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RELAXATION IN DISSIPATIVE MECHANICAL SYSTEMS* 

L.D. ESICIN 

An asymptotic expression for long times is obtained for a In-parametric 
family of solutions of a Hamiltonian system with n degrees of freedom, 
modified by the addition of generalized dissipative forces. The method 
used here is based on a preliminary study of the solutions ofa linearized 
system of equations, followed by the application of the Schauderprinciple 
in Banach space with a suitably chosen norm. 

1. The aim of this paper is to study relaxation in a mechanical system, the equations 
of motion of which are written in the form 

(1.1) 

Here p,q are (fz X I)-vectors (columns) of generalized momenta and coordinates, and the@ X 1)- 
vector Q(t, p,q) defines the Lagrangian forces in tER+,p,q variables. 
in 41 coordinates begins with terms of at least the third order. 

The expansion n,(q) 

*Prikl.Matem.Mekhan..47,5,744-753.1903. 



606 

We will further assume that the following condition of total dissipation /l/ holds for 
the Lagrangian forces: 

~PiQ~(t*~~d<-~(ll~ll) (1.2) 

where a(z) is a continuous and strictly increasing function, defined on R, and such, that 
a (0) -,o. It has been shown that if the condition of total dissipation holds for the system, 

the potential energy II(q) has an isolated minimum at q = 0 and Q(t,p,q) -CO as p -CO uniformly 
in tER,, then the origin of the phase space q =p = 0 is uniformly asymptotically stable. 
We note that (1.2) and that fact that Q is continuous, together imply that /l/ 

Q V. 0, q) = 0 (1.3) 
We shall show in Sect. 2 that by imposing certain additional restrictions we can find, 

for every real (Pn X I)-vector c a corresponding tl = tl(c) such that when t>t,, a real 
solution of, (1.1) exists which has the asymptotic representation 

(I 
Y- I I P 

=Y(t)(c$o(l)), t-+-J 
._ 

where Y(t) is a real fundamental solution matrix IFSX) of the linear system obtained bylinear- 
izing (1.1) about the equilibrium q = p = 0. We use here the result obtained in/2,3/which 
dealt with the asymptotic solutions of linear differential vector equations of general form, 
with variable coefficients, to compute the asymptotics of the FSM of the linearized system. 
The asymptotic form in question yields the required estimates for the matrices Y (t), Y-’ (t). 
After this the asymptotic form of the solutions of (1.1) is found using the Schauder principle. 
Equation (1.1) is replaced by a non-linear integral equation and the latter is studied in the 
Banach space of vector functions with a specially chosen norm (the choice of the norm depends 
on the asymptotics of the solutions of the linearized system). 

The method of investigating the relaxation in mechanical systems with dissipationdeveloped 
here can be used in other problems with an asymptotically stable equilibrium position, not 
necessarily possessing the Bamiltonian form of Eqs.(l.l) modified by the addition of general- 
ized forces. Such problems are encountered not only in mechanics, but also in physics,biology 
and chemistry. 

The constraints imposed here are discussed in Sect.3, and specific examples illustrating 
the results obtained are given in Sect.4. We note that in fact we use not the condition of 
total dissipation (1.2), but only the condition of total dissipation of the linear part of 
the Lagrangian forces. This condition distinguishes the class of mechanical systems for 
which the results obtained in this paper (assuming, of course, that the remaining constraints 
also hold) are applicable. 

2. Linearizing (1.1) about the equilibrium position q=p=o, we obtain the set of 
equations 

Q*‘IPi,Pi’=-q~~ZUij(t)pj, i=1~2,*..,IZ (2.1) 

The absence of the terms xbij(t)qj from the shcond group of Eqs.(Z.l) follows from (1.1). 

We assume that tne (n x n)&atrix Al (t) = (aej (t)), ai, (t) = 6’Qi (t, 0, O)lapj is symmetric and negative 
definite (see (1.2) 1. We will formulate this, an d certain other restrictions imposed on Al, 
in the form of the following condition. 

lo. A,(t) is a symmetric, negative definite Yt ER, -matrix with a finite, also negative 
definite limt, Al (t) = B,. The characteristic roots [I, (i = 1, 2, . . ..n) of the matrix BL are 
simple (pairwise different) and ui # -2 . The negative definiteness of B, implies that 

ut < 0. Denoting by ui (t) the characteristic roots of the matrix A,(t), we obtain limt,u, 

(t)= Qi, 01 (t) < 0 . To compute the asymptotics of the FSM of the linear system (2.1) we 
must have available a definite version of the conditions of regular behaviour of -41 (t) as 

t-kca. Following /2/ we will require that the condition 

20. A, (t) E G (0, =J), IIAl'li2 +Ii A/II E L, (0, w) 

is satisfied. Equations (2.1) can be written in the form 

Y’ = A (4 Y 

I Q 0) 
y- P(t) 

-(2nxl)-vector, 

(2.2) 

Suppose the orthogonal matrix T,(t) diagonalizes the symmetric matrix Al 0) I and T1 = 

limt, T1 (t). Then 



607 

T”BT* = 
0 E 

I I I -E S 
=R, R=limt,R(t), B=limr,A(t) 

S (t) = diag {a, (t), . . ., a,, (t)}, S = limr- S (t) = 

diag {a,. . . ., a,,} 

Ta (t) = I Tl 0) 0 
o I TI 0 

T, (t) ’ 
T,=limr,Tt(f)== 0 I I T 

1 

The characteristic polynomial of the matrix R (t) is found using the Schur formula /4/, 
and is equal to 

,R(t)--~I=~,e'-u*(r)r+ 1) 

Consequently, the characteristic roots &,,,+i of the matrix B and &,n+c(t) of the matrix 
A (t) have the form (every i - 1,2,..., n has the corresponding two roots &,w) 

b, n+f B (2.3) 

(2.4) 

From (2.31, (2.4) and condition 10 (the simple form of ol# -2) implies that the roots k,Nc( 
of the matrix B and &,*i(t) of the matrix A (t) are simple for t> to> 1, and the roots ui 
can be numbered in such a manner that for Y, (t) = Re&(t) when t> te we have 

"? v' O) = 
v1 (1), min vj (t) = van (t), j = 1, 2, . . ., 2~2. Then 0 > v1 (0 > * * * > %I (9. The equal sign can 

j 
occur here only between the real parts of the complex conjugate roots. We introduce the fol- 
lowing condition for the non-linear part Qa = Q -A,(t)p of the Lagrangian forces and the 
(n X I)-vector XI,/aq. 

30 . The following estimate holds in the region &- {~:nsr15F(1qfl-~Ip1I)<6<i) of the 
phase space (q,p) uniformly in t ER, : 

I QIi-3 I <su~ll" (2.5) 

where cl> 0 is a constant and m> i is such, that d = mvl - v,<O; here v, = limt,v, (t). 
We can now formulate the following fundamental result. 

Theorem 1. Let condition (1.2) and conditions lo-30 all hold. Then for every real 
(2~2 X I)-vector c we have t, = tl(c)>i such that when Vt>t, , Eq.U.1) has a real solution 
y(t) for which the following asymptotic representation holds: 

a(t) 
Y @) = p(t) 

II 
=Y 0) (c + o(i)) (2.6) 

where Y(t) is the real FSM of (2.2). 
The following representation holds for Y(t): 

Y(t)=T(E+o(i))exp{h(t)dtC 
i9 

A (t) = diw PI (t), . . ., h, (01 

(2.7) 

where T is a constant non-degenerate matrix which converts the matrix B to its diagonal form, 
and C is also a constant non-degenerate matrix. 

Proof. We will first establish the validity of (2.7) for the FSM Y(t), and then the 
validity of the asymptotic forms (2.6) for the solution of (1.1). Since the roots k~+l 0) 
are simple for t>tor a matrix T,(t) exists for these roots, which diagonalizes the matrix 

R (4 . Then T, = lim:,T, (t) diagonalizes R and T (t) = T, (1) T,(t) - A (t). We obtain the 
asymptotic forms of Y(t)with the help of the matrices T (t), T”(t) and the diagonal matrix 

AI (t) = diag {3.,, (t), . . ., him (t)} = -diag {!F (t) T’ (t)) 

Thus we have h,, = --(TV’(t)T’(t)),, (the smoothness of T(t) is identical with the smoothness of 
A (0). The matrices T,(t), T*+(t) satisfy the matrix equations 

R (4 TI (4 = T, (4 A (4 (2.8) 

T;’ (t) R (t) = A (t) Ta-’ (t) (2.9) 
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T;' (t) Ts (8) = E (2.10) 

From (2.8) and condition lo it follows (below we omit the argument t from the elements tlf 0) 
of the matrix Ta (t) , and rfl(t)of the matrix T,'(t), as well as from the roots A1 (t)l (Jf (Q)? 
that tij = tn+i~ = &+l = tn+fn+l = 0 for f g: i, i, f = 1, 2, . . . , n, &jr = I&j, h+~~+~ = k,,+&,,+,, and 
tjf,thr+f remain arbitrary. 

Putting Qi * &+f = 1, we obtain 

A, = di&g {AI, . . ., LA A;, = diag {hn+I, . . ., k,} 

From (2.9) ft follows that rif = pn+J = 0 for i # ), n + j, qa+i = -Xfqf, 7%+),+, = -&+,t,,,, 

and TJ1, %,,, j = 1, 2, . * *1 n in (2.9) semain undetermined. To determine them we Compute the 
diagonal elements in (2.10). We obtain 

TjJt)f + ‘Sjn+#,,+J~ = 1, m+h8+~ + %l+in+lt,+ln+l - 1 

Whence, substituting the already determined ttf, &+ff, tf,,+f, f,,+fn+ft rfn+~,r,,+~,,+fn+fr we obtain 'fl * 
%*W Since h,&+f = i, it follows that the final formulas for the elements of the matrix 

Tsw’(t), different frcm zero, have the form 

Now we can compute the matrix Al. Clearly (here again we omit the argument t) 

T-IT = T,-l (T;‘T,‘) T, + T;‘Z’, (2.11 

The matrix P = T,+T; is a diagonal block matrix and its diagonal blocks T;‘T; are 
skew symmetric by virtue of the orthogonality of T,. Computing the i-th diagonal element in 
the first term an the right-hand side of (2.11) and taking into account the structure of the 
matrices TS, T,"', we find that for i = 1,2,..., n it is equal to 

n 

L 2, T4kPkrhf = %i (PUti4 f Ptn*it,,it) + tina(PA+t~tci+PRt~~rtn+tt)trO 

since by virtue of thi skew symmetric character of P,p,, =p,,+:,,+l = 0, while pbtf =P,,+<~= 0, since 
P is a diagonal block matrix. A similar result is obtained for f = n j- i,n f 2,...,2nt there- 
fore (T”lT’)tt = (T;lT,‘)tt, so that 

111 =h;(&-&)-', &+&a ki(Xi -_h,i)-' 

Equations (2.4) can now be used to express the elements of the matrix A, directly in 
terms of the roots (I* @of the matrix A,(t) 

an= - -$- (+g& + w(t) - 4p) ( i=1,2 ,...I n, I~~=--(~~_[“Z(t)_4)“1,) (2.12) 

From condition 2O it follows thai 1 A,‘][ = o(1) and hence ut' = 011)~ and from (2.12) we have 

x rt = 0 (9). i = 1, 2, . . ., 2% (2.131 
Let US now consider the function 

I,, (t) = Re (hi (t) + hll (t) - &, (t) - hIl (t)), t ‘;a to > 1, i, li = 1, 2, . . ., 2n: i * j 

When f#= i + n we obtain from condition lo and (2.13 1, the estimate 

I IfI f4 1 2 B > 0 (2.14) 

where fl is a constant. The estimate (2.14) also hol.ds when f = i -&n,lim-ai (t)= al< -2. 
This again follows from lo, (2.4) and (2.13) (provided that (r, < -2, hr,n+i (t), blf (t), h,+c (t) are 
real for t B to). If on the other hand 0> al> -2, then from (2.4) and (2.12) we find that 

Ih+& (t) = & (0, illSM (f) = i;,, (t). so that 

Ii,,& (8) * 0, t > to (2.L5) 

The estimate (2.14) and identity (2.15) show that conditions 1 O-2O enable Theorem 3.1 of 

/2/to be used when computing the asymptotic forms of the FSM of (2.2). Using this theorem 
we find that when t > t*, (2.2) has the following FSM: 

Yx (t) = T (t) (E t 0 (4)) exp i (A -I- Ax) dt (2.16) 

But (2.12) and condition lo 
t. 

imply that the fol.l.owing finite limit exists: 

multiplying the matrix Y>(t) on the right by the constant matrix exp (-Cl) we find, 

that when conditions lo and 2O hold, Eq.f2.2) has the FSM Y%(t) for which the following 
representation holds: 
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L 

Y*(t)=T(E+o(l))erp~Adt (2.17) 
. 

(T = limf+_ T(t) is a constant non-degenerate matrix which converts the matrix B to diagonal 
form). Clearly, for Y,+(t) we have 

Y;'(t)=erP(+f) (E+o(l))T-’ (2.18) 

The matrix Yz may be complex (it will be if its roots hi,n+i(t) include the complex roots 

i.e. if 0> ci > - 2 for some i, otherwise Y, isreal). But the coefficients of (2.2) are 
real, and therefore the equation has real FSM; e.g. such will be the FSM of Y(t)satisfying 
the initial condition Y (0) = E. Since any two FSM of (2.2) differ from each other only by 
anon-degenerateconstantright multiplier, it follows that the real FSM has the form Y (1) = 

Y, (t) c, where C is a non-degenerate matrix (generally speaking the matrix is complex, how- 
ever, when all o,< -2, we can put C = E). The representation (2.7) for Y(t) follows from 
(2.17). From (2.17), (2.18) and the condition of sequential numbering of the roots ci, we 
obtain the following estimates which will play an important role below (c~,~> 0 are certain 
constants) 

* 
llY (4 II bee exp s ~1 (r)d~, t>to (2.19) 

1. 

II Y_‘(s) II <<cs exP~%(T)dr* s>4 (2.20) 
I 

Let us now compute the asymptotic forms of the 2n-parameter family of solution of (l.l), 
writing it first in the form (f is a (2n xi)-vector) 

Y' = A (t) Y + f (2.21) 

A (t) - 

We change from (2.21) to the integral equation (c is an arbitrary real (2n x I)-vector) 
OD 

y(t) = Y (t) c - 
s 

Y (t) Y’ (8) f (s, Y (s)) ds = (IV) (t) (2.22) 

Clearly, to can be chosen so that (see condition 3O) 
mv, (t) - van (t) Q d/2, vr (t) < v1/2, t > to (2.23) 

Suppose now that a is a constant satisfying the inequality 

0 < a ( min {-d/(4m), -v,/4} 

We introduce the Banach space W of (2n x I)-vector functions 

Q 0) 
Y (4 = p @) I I 

continuous for t > t, 2 to 01 will be chosen later) with the norm 

u~(~)Hl=~$~(~)~(l~*(~)lilp!(t)l)~<~ 

(m(f)=exp(-a@-to)-S?(r)&)) 
1. 

and consider the sphere we = {P E W: III/II~ Q 6), where S> 0 is the same as in condition 30. 
First, we shall show that the operator I given by (2.22) leaves the sphere wb invariant, 

provided t,= tr(6,c)is sufficiently large. By virtue of the definition of the norm in W, the 
inclusion g E wb iD@ieS that Vt > tl, the point (q(t), p(t)) of the phase space belongs to 
&, and the estimate (2.51, which can now be written#in the form 

II f 6, Y (S)) 1 d ~6 exp ( ~CZ (s - to) I- m 1 v$)dl) , y E wb (2.24) 

(since 6 (1, therefore 6" cl), holds for y E wb '* 
To simplify the notation used in subsequent derivations, we will write 

q(t)- Ierp {ma@-to) + j(mvr (T) - ye,,(r)) 1371 ds 
I 1. 

The convergence of the integral is ensured by the inequality (2.23) and condition of the choice 
of cc. Using the inequalities (2.19), (2.20), (2.24), we obtain 
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provided that t, = t,(&c)is sufficiently large. The operator I represents the continuous 
mapping We+ Wb. 

Let PI-Y with respect to the norm W* YI, YE W,. Then, using (2.19) and (2.20lwefind, 
from (2.22) 

(2.25) 

we must check that Ve>O Ss,(e)>O, is such, that ~Ivl-Iu~Ce, %f tiv~-Y!~d&(a), i.e. if 

[;I: ( I qrl (4 - gi (4 I + I ptI (8) - r+ (8) I ) Cs 
i 

61 (e) ew (a (8 - kd + S Y CT) dr) G 15, (8) 
L. 

But the inclusion y,, ye W,, yields, when t>tI, using (2.24), 

s"exP(-i ) "s,, (7) dT i f (sv yt (-9 - f (0, Y (5)) Mds a =wi’(t) (2.26) 
1. 

Let us write the integra; on the right-hand side of (2.25) as a sum of two integrals 

&i+s" (2.27) 
1, f, t* 

From the estimate (2.26) it follows that tl -t,(s) can be chosen sufficiently large to ensure 
that the second term on the right-hand side of (2.27) is not greater that e/(Zc,c,). Next, 6,(e) 
can be chosen sufficiently small for it not to exceed c/(&cJ .and the first term on the right- 
hand side of (2.27), by virtue of the uniform continuity of the vector function f. NOW 

from (2.25) the continuity of the operator I in W, follows. 
To show that the mapping IWa is compact, it is sufficient to confirm that for any e> 0 

there is a finite covering of the semiaxis [t,,co) by the open sets on each of which the 
oscillation of all vector functions Y%(t) i= m(t)(ly)(t)does not exceed EVYE we. From (2.22) 
we obtain, for t">t'>t%, 

f' 

Yl(O - Yr U’) = (cp w y w - ‘p (0 y P”)) c + ‘p w y (V) s Y-‘(s) f (s. Y (4) ds + 
L” 

(9 P@) y (t”) - 8 (f) y (f’)) f Y-’ (4 f (~1 Y (4 dr 
t’ 

and this, taking the inequalities (2.19),(2.20) and (2.24) into account, yields 

II R (t’) - Y, it3 y c II ‘p (t’) Y (t’) - ‘8 (t3 Y (0 II x 0 c I + &cct* (h)) + hwa @XP (-a (t" - 4)) (tp (t") - *,(t')) (2.28) 

In addition we have 
[ ‘p (I’) Y (t’) - ql (L”) Y (t") i g c*=" (c"" + e-@) (2.29) 

From (2.28) and (2.29) it follows that Ye>0 Bt,(e) is such that 

II YI W - Yl @‘I II Q e, VY E w,, Vf’, L” > ts (e) 

Further, from (2.28) it also follows that the interval (t*,t,(e)) can be covered by a 
finite number of intervals of length 6, (& in each of which the oscillation of the vector 
functions n(t) does not exceed sVyc W, (this follows from the uniform continuity of the 
segment (tl,ts(e)l of the matrix P(t)Y(t) and the function * (0). We have therefore obtained 
the required finite cover of the semiaxis [tl, M) by open sets in every one of which the 
oscillation of the vector functions yl(t) VIE W, does not exceed e. 

We can now assert, in accordance with the Schauder principle, that Eq.(2.2) has a sol- 
ution in We, i.e. a solution y(t) for which the inequality (2.24) holds. Estimating the 
integral on the right-hand side of (2.22) using (2.241, we obtain 

~Y-l~s,r~s,Yo,nt~~~c'c.0(f)_~(l, 

Therefore (2.22) implies the validity of the asymptotic representation (2.6) for the solution 

Y 0) constructed, depending on 2n arbitrary constant (coordinates of the vector c), and 

this completes the proof of Theorem 1. 

Note 1. The proof of Theorem 1 is based on the use of condition 3O and the estimates 

(2.19) and (2.20) for the real FSM of the linearized system. The estimates are obtained 
from the asymptotic representations (2.17) and (2.18) for this matrix, and their validity is 
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ensured by conditions lo and 2O. The representations (2.17) and (2.18) and hence theestimates 
(2.19) and (2.20), will, however, remain valid when condition 2O is replaced by a more gen- 
eral (but also more cumbersome) condition 

2O'. For certain integral k&2, 

Al (t) E CI, (0, m), l Ajr) 1 = o (I), 8 = i, 2, . ., k - 2; 

~A~)II”+IIA,B)REL,(O,~~), s=li, 2 ,..., k-l 

The proof of the above assertion uses Theorem 1 of /3/instead of Theorem 3.1 of /2/. Thus 
Theorem 1 remains valid when condition 2O in its formulation is replaced by 2O'. 

Note 2. If system (1.1) is autonomous, i.e. if the matrix A(t) is constant A(t) =A, 
we can write y(t) = exp (tA) in (2,6) . 

3. Let us discuss briefly the conditions lo-3* of Theorem 1. First we note that if the 
symmetry of the matrix AX(t not required, the condition of total dissipation leads to the 
requirement that the symmetric matrix Al V) + A: (t). should be negative definite, provided 
that A,(t)*0 (here the superscript T denotes transposition). The method described in Sect. 
2 can also be used in this case, but the condition that the matrix A,(f) should be symmetric 
considerably simplifies the derivation as well as the formulation of the final results. In 
the case when the Lagrangian forces Q do not depend explicitly on t (i.e. system (1.1) is 
autonomous), the symmetry (constancy) of the matrix Al follows from physical considerations, 
namely from the principle of symmetry of the kinetic Onsager coefficients /5/. Condition 2O 
is satisfied automatically for an autonomous system. We stress once again the importance of 
the demand in condition lo that the matrix A,(t) be negative definite, following from the con- 
dition of total dissipation of the linear part of the Lagrangian forces. It is preciselythis 
condition that defines the class of mechanical systems whose relaxation can be studiedusing 
the method developed in thispaper. Condition 2O appears as the condition of regularity of 
behaviour of the matrix Al(t) elements as t-co, and condition 3' represents the condition of 
"adjacency" of the non-linear parts acting on the system of Lagrangian and potential forces. 

Let us now consider a system with one degree of freedom (n = 1). The symmetry condition 
for the matrix A,(t)= (4(t)) is now satisfied automatically and condition lo is reduced to the 
demand thato,= l~q_a,(t)#-2 and negative. Condition 3O of regularity assumes, when a= f, 
the form u,'*+ 14" 1 e L1 (0, m) . 
v1=vl=u1/2 and condition 3' 

In the oscillatory case O>u,>-2, we shall obviously have 
means that the estimate (2.5) must hold for any m>i. In the 

aperiodic case 4<-2 
V, = (u, + (u,’ - 4)"')/2, V, = (a, - (q* - 4)'/*)/2 

and the number m in (2.5) must now satisfy the inequality 

01- (St'- 4) 'II 
m> 

01+ (O*'-4)"' 

from which it follows that m must increase as u, decreases 

4. To illustrate Theorem 1 we consider the case of a 
friction forces. The equation of motion has the form 

g" + h (t) g’ + sin g = 0 

in order to satisfy condition 3O. 

pendulum in the presence of viscous 

(4.1) 

Equation (4.1) can be reduced to the set of equations (1.1) if we put 

g' = p, a = 2-lp’ - co(1 g + 1, Q (t, p, g) = -h (1) p 

The matrix Al (t) = (-k(t)) and conditions lo 
limit exists: 

,2' reduce to the requirement that the following finite 

lir%m h (t) = h> 0, h # 2 (4.2) 
together with the inclusion 

h" + Ih” 1 E L, (0, m) (4.3) 
Since in the present case the non-linear part of the Lagrangian forces Qa (t,p,g)EO, while n,- 
H - 2-l (pa + g*) = 0 (fl) and fl,& = Q (I 4 I'), it follows that the estimate (2.5) in condition 3O 
holds for 'm=3. The characteristic roots Al,, of the matrix 

B = lim,, A (f) = 
1-Y -:I 

have the form A,,, = -2-‘h f (ha/4 - 1)‘1’, therefore condition 30 reduces to the demand that 

O<h<4/fl (4.4) 
The values h<2 correspond to the oscillatory case, and -h > 2 to the aperiodic case. Thus 
the conditions of applicability of Theorem 1 for Eq.(4.1) reduce to the condition that (4.2)- 
(4.4) hold. 

Using Theorem 1 we shall write the expressions for the asymptotic forms of a two-parameter 
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family of solutions for the oscillatory case h<2 (the aperiodic case is simpler and will 
not be considered). We construct the matrix y(t) using the matrix Yz (Q of (2.17) taking 
the real and imaginary part of the first column of Y, (0 as its first and second column. 
After simple reduction we obtain the following asymptotic representations for the solutions 
of (4.1) (b,,, are the coordinates of the vector c): 

p(t)=(bloosSrh(r)dr+b,ainSl(,(r)dr+o(l))erpSv,odr 

exp ~vlw dr 
t. 1. 

v,(t) = Re 1, (t) = -h (t)/2, q1 (t) = Im 5, (t) = (1 - h2/4)"# 
Note 3. The above method of construcing the real FSM Y(t) of the linearized system (2.2) 

using the FSM of y,(t), with the asymptotic form given by (2.17), can also be used-in the 
general case of n degrees of freedom. If the roots kSTnti are not real (when li= I,), then 

we take the real and imaginary part of the i-th column of Y*(t) as the i-th and (n+i)-th col- 
umn of Y (f) . On the other hand, if &, are real, then we take as the i-th and (n+Q-th 

column of Y(t) the corresponding columns of the matrix l/Z(Y, (0-b i;,(t)). The fact that this 
yields a real FSM of Y(t) of the linearized system (2.2) can be confirmed using the asymptotic 
representation (2.17) for Y,(t). 
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ON TWO TYPES OF SWIRLING GAS FLOWS* 

A.F. SIDOROV 

Two classes of exact solutions of the three-dimensional stationary equa- 
tions of gas dynamics are constructed. The solutions are used to describe 
isentropic gas flows with two types of swirling in axisymmetric divergent 
channels. The effect of swirling on the thrust of special-type nozzles 
is studied. 

Approximate analytic or numerical methods were used earlier to study radial-equilibrium 
flows with arbitrary swirling in /l/, and various qualitative features of the swirling flows, 
such as the appearance of vacuum kernels, back flows and stagnation zones at the inlet to the 
nozzle throat were discussed in /2-4/. Analytic solutions in the transonic approximation were 
constructed in /5/ and the dependence of the nozzle thrust on the swirling parameters were 
investigated in /l, 6-9/. 

1. In studying swirling gas flows we will use two classes of solutions of the equations 
of gas dynamics for the case when the velocity vector components I+ and the function o= py-' 

(P is density and y is the adiabatic index) depend linearly on some spatial coordinates Xk 

/lO/. 
First we consider isentropic three-dimensional flows when the linear dependence on 2% and 

x8 has the form 
Q =.g h)r u, = g, k) (1.1) 
Ui = 4 Cd 0% + f: (4 za + gt W, i = 2, 3 

*Prikl.Matem.Mekhan.,47,5,754-761,1983. 


